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I. Introduction

Modern military aircraft must be capable of performing many diverse missions under an

exceptionally wide variety of flight conditions. This need has generated a constant increase

in demands for agility, speed, precision, and survivability. As a result, the role of the FCS

has expanded well beyond the traditional one of augmenting stability and controllability

with very limited authority[I-2]. On current aircraft such as the F/A-18, F-16, and the

F-22, the FCS has already taken on the role of a full authority system that largely deter-

mines effective vehicle dynamics. In the future, many high performance milita,'y aircraft

will critically depend upon the capabilities of advanced flight control systems. This is par-

ticularly true for aircraft designs that incorporate supermaneuverability, low observability,

relaxed aerodynamic stability, reduced structural stiffness, and vertical take-off/landing.

Future aircraft will also increase the complexity of the FCS with the need to manage

large numbers of control effectors including new forms of control such as thrust vectoring

vanes or vortex control. In addition, the FCS will be used to implement complex functions

that are possible because of the wealth of information available over common avionics

data buses. This will include completely new functions such as impairment :etection and

control system reconfiguration after hardware failures and battle damage, and integra-

tion of numerous subsystems such as propulsion, weapons, and structural control. Yet,

even today'. flight control systems are burdened by the lack of effective control law design

tediniqueb, expensive and lengthy software development cycle.s, and the limited processing

power available on most aircraft. Thus, while there has always been considerabL interest

in creating better approaches to the design and implementation of flight control systems,

there is currently more need for them than ever.

As current research suggests, neural network and fuzzy logic based approaches to

control may have substantial benefits in performance, robustness, reliability, and cost.

This hab been demonstrated for a variety of systems[3-8] including some initial work with
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aircraft[9-16]. For this reason, the Naval Air Development Center began a comprehen-

sive program in 1989 to develop and assess neural network technology for Naval FCS

applications[16,18,20-21]. Our approach throughout this program has been to avoid the

widely used neuro-control "black box" techniques in which the type of system being con-

trolled is considered unimportant. Blindly applying generic neural control techniques to

aircraft is unlikely to have any more success than previous applications of generic control

theoretic techniques. Flight control systems are in many ways a unique subset of control

systems. They require carefully considered and well thought out approaches tailored to

their particular characteristics and requirements[16]. Any less may provide an interest-

ing demonstration of the power of neural networks, but is unlikely to see real use on a

production aircraft.

The largest obstacle in the transition of neural network based approaches into pro-

duction aircraft is system validation. System validation is absolutely essential due to the

criticality of the FCS, the conservatism of the aircraft community, and the skepticism

dir"Lcd towards neural networks. Yet, to achieve this validation will likely require the

formation of new techniques, much in the way techniques have been developed over the

past few dccades for digital flight control systems. Therefore, the goal of the present phase

of our work is not only to prove that neural network based approaches are feasible, but also

to devclop neural network based approaches that can meet the flight safety iequirements

for implcmentation on manned aircraft. To achieve this goal, we have three major in-house

efforts, three contracted efforts, and plans for additional contracted and in-house efforts.

This report will describe these efforts and give some initial results. It will also attempt

to pr.vidc sonic insight into the full scope of the problems and limitations affecting the

design and implementation of current military flight control systems.

Aircraft are time-varying non-linear dynamic systems with six degrees of rigid body

frcedon and ilinerous aeroelastic modes. These dynamics vary considerably over a large
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range- of flight conditions and are often altered by configuration changes. Even without

these changes, the best aircraft math models are often highly uncertain, and some areas of

the flight envelope are never well understood. Among dynamic systems, aircraft hold an

intercsting distinction of being one of the few systems that may be deliberately designed to

have very fast open loop unstable modes for the sake of maneuverability. For example, the

X-29 was designed with an instability that has a time to double amplitude of only about

an eighth of a second. One result of these fast instabilities, beyond the increasing depen-

dence-of the aircraft on the FCS, is to make rate and position saturating non-linearities

takc oii an exceptional amount of importance. This is particularly true since the aircraft

em ironment has one of the richest varieties of substantial magnitude disturbances found

in any controlled dynamic system. In addition to the more obvious limits set by control

effector saturations, there are other often unanticipated limits. These are generally caused

by either the aircraft's structural bending modes or the wide range of air flow character-

istics that can occur over individual control surfaces. This can place limits on controller

bandwidth and cause loss of effectiveness or even reversal of control inputs in some flight

conditions.

Iii any case, the most notable difference between the FCS and other control systems

is the role of the pilot. The pilot is no. the classical control operatvr who chooses set

points and lacks substantial effect on the dynamic characteristics of the closed loop system.

Instead, the pilot must be treated as a highly adaptive element within the loop. Pilots are

evex capable of producing poor damping, limit cycles, and instabilities when attempting to

control aircraft with marginal closed-loop characteristics. Further, the dynamic response

of the system must be tailored toward what the pilot wants (such as mission tailored flying

qualities) and not what seems best from basic control criterion.

Given the wide range of factors described above, it is not surprising that no single

methodology can incorporate even a substantial number of the important features needed
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to be considered in design. Designs are extremely labor intensive and require costly ad hoc

trial and error adjustment during piloted flight simulation. Even then, all major aircraft

flight control systems have had deficiencies that were only discovered in flight tests. Also,

given the increasingly co,.'plex requirements on the FCS, if many factors are not dealt

with early in the design process, the result will definitely be aircraft that cannot achieve

their full potential. Using neural networks to resolve some of these complex design issues

and create designs with better performance for less 1. .or and cost is the goal of our neural

flight control law synthesis project[18]. A complete description of this project along with

sonic initial results is given in section II.

With neural control law synthesis, the structure of the FCS, itself, remains conven-

tional. However, conventional flight control systems sometimes perform poorly in situations

where human pilots possess techniques that perform well. This often occurs due the pilots

ability to intelligently alter control strategies and plan ahead for future events. One ex-

ample of this type of situation involves automatic carrier landing systems(ACLS)[19]. The

ACLS is designed to track glideslope. However, the real problem is not to track glideslope,

but to have the proper terminal conditions at the carrier. For this reason, our second

in-house project involves creating a new form of automatic carrier landing controller us-

ing a hybrid neural network/fuzzy logic approach. This approach will incorporate Naval

fighter pilot knowledge, Naval control engineer knowledge, and unsupervised neuwal net-

work learned airframe knowledge into the controller[20. One major advantage of this type

of controller is that it can be expressed as a set of parallel English rules. This provides

a transparency that can ease the validation process and readily adapt to pilot criticisms

during f.ght testing. A full description of this project with some initial results is given in

section III.

Current control laws have become exceptionally compiex, and often require substan-

tial software development after the completion of FCS simulation. They also require a.
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considerable amount of software support throughout the life of the aircraft. This is due

not only to the complexity of the control law, but also to the high iteration-rates required

bv modem aircraft. Achieving acceptable rates within available throughput often leads to

considerable difficulty with problems like delays from subtle multi-tasking errors. Neural

networks, however, have the computational efficiency and speed to calculate immensely

complex control laws rapidly if they are implemented in specialized hardware. They also

can train directly from the software simula'tor to eliminate significant software development

and supports costs. In addition, they may incorporate some hardware robustness benefits

such as graceful degradation after damage. Therefore, our third in-house program involves

emulating an existing flight control law with a neural network[211. A description of this

project with some initial results is given in section IV.

Another important issue concerns adverse dynamics that can occur during configura-

tion changes. This is an area that is becoming much more important as the FCS becomes

"tailored" to individual mission and tactical segments. Also, reconfiguration after battle

damage o hardware failures has recently become a much more viable possibility with the

completion of flight tests for a, prototype system by the Air Force[22J. A contracted effort

by Systems Technology, Inc. and STR is attempting to apply neural networks with on-line

learning to this problem as described in section V[231.

Finally, section VI will briefly discuss recently begun and planned efforts. The recently

bcgur, efforts are learning augmented adaptive control[31] and neural network augmented

nonlinear control theory methods. Both these projects center on advanced techniques

that use neural networks for several features including on-line learning to overcome the

uncertainty associated with the flight control design process. Ultimately, this type of on-

line learning may be nece.5ar3 to avoid trading performance for robustness or performing

large amounts of on-line tuning.

The planned efforts are neural network/fuzzy logic augmentation systems and optical

neurons. Augmentation systems may provide great benefits, but allow easy validation since
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they can be of limited authority and analyzed as a disturbance to a conventional flight

controller. Optical neurons may provide an excellent way to implement neural networks.

This will be followed, in section VII, with our conclusions.
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II. Neural Network Flight Control Law Synthesis

Work in neural control law synthesis is being done under an NADC Independent Ex-

ploratory Dcvelopment(IED) program. The overall objective of this program is to incor-

porate emerging neural network technology into a feasible concept that will simplify and

improve flight control system development. As briefly mentioned in the introduction, the

flight control law deign process is a very lengthy and complicated one. The engineer

begins with ant uncertain nonlinear model determined only from wind tunnel testing and

computational fluid dynamnii. A baseline structure that defines the feedback parameters

and compensations for the FCS is then developed based on the -ircraft's predicted fea-

tureb. flying qualities requirements, and proposed mission requirements. Next, the engineer

linearizes the aircraft model at various points in the flight envelope and applies combina-

tions of classical and modern linear control theories to generate controller gains and filter

time conistant. The final nonlinear control law is obtained by swvtching or interpolating

between these separate linear controllers as a function of a small number of parameters.

Limited paranieterb are used since additional ones would require excessive memory re-

quireient-s due to the diinensionalitv of the associated look up tables. Essentially. the

engiic-I ha created a discrete nonlinear mapping of design points in the aircraft envelope

into sets of desired control system gains. This drawn-out design technique, however, limits

the total number of trim points the engineer can investigate for a given aircraft due to the

high amount of labor associated with each design. Also, since it relies heavily on uncertain

linear appruximation models to represent the aircraft, it often yields unsatisfactory results.

particularly when the aircraft is subject to large motions. So far, robust controller design

techniques sudi as H_, and 1L Synthesis or nonlinear techniques like feedback linearization

offer the best chance for solving sonic of these problems. Still, due to the difficuity of

expiessing complex aircraft design features in a mathematically tractable form. all cur-

rei t tchniquCS % ill both negiclect wome factors and overdesign for others. Piloted handling

qualities, in particular, have proven extremely difficult to incorporate in any technique.
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Our approach to the design problem is to use neural networks to synthesize the con-

tinuous nonlinear functional mapping between aircraft design points and control system

gains and time constants. As has been proven, many neural networks are capable of do-

ing this for almost any complex relationship with a large number of inputs and outputs.

Therefore, we are not limited to a small number of parameters as the basis for schedul-

ing gains, but can use additional rapidly changing aircraft parameters like angle of attack

and sideslip. The neural network may allow us to determine the important relationships

between these quantities without significantly complicating the process. Some additional

anticipated benefits are the reduced labor and expense required to develop flight control

laws, and the increased number of design points used in the flight envelope. Furthermore,

the neural network may provide significant insights into how the scheduled points should

be distributed throughout the flight envelope. It may point out bettzr interpolation func-

tions to be used between these scheduled points. Also, the designs themselves may be

more optimal due to the use of performance indices that are far too complex to be used in

any mathematical setting. These indices may also finally allow inclusion of adequate pilot

handling qualities criterion.

Our current approach is illustrated in Fig. 1. Here, pilot inputs are supplied to both

the augmented aircraft model and a set of desired performance models. The performance

models exemplif various desired maneuvering characteristics of the aircraft and depend

primarily on the type of aircraft, the current mission requirements, and the level of flying

quality sought. Typical maneuvers such as pitch doublets and rolls are performed at each

design point in the envelope. When the maneuvers are completed, a cost function is used

to "grade" the controllei with respect to the performance models. The "grade" is then

used to adjust the weights and biases in the neural network and produce new parameters

for the controller at each design point. The new parameters enable the augmented aircraft

to achieve responses that more closely match those of the ideal performance models. The

8
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process is then repeated until- the "grade" falls below a specified tolerance and the proper

controller gains have been determined.

This neural network approach has three main advantages over the standard neural

control techniques. First, the neural network only designs gains and time constants for a

known control law structure. Implementation of the control law, including verification and

validation, proceed using established methodologies. Secondly, the speed and efficiency of

the training algorithm is not critical to the success of the procedure since it is all done

off-line. Finally, it could readily be transitioned into an on-line neural gain scheduler

for existing and future flight control hardware. This on-line approach would have great

performance benefits due its literally infinite number of F' heduled gains. Also, it could

easily schedule gains on many parameters including rapidly changing ones. This could also

be done as a limited authority neural augmentation system instead of a full gain scheduler.

The benefit of an augmentation system being that the neural network outputs can be

limited and treated as a disturbance to allow simpler validation.

Current work is centered on a nonlinear F/A-18 longitudinal aircraft model with

data for the full maneuvering envelope. The reference, pezformance model being used is

based on an actual high performance jet aircraft which has been augmented to meet

MIL-F-8785C[24]. The neural network choses six gains and one time constant in the

F/A-18 pitch control system. The neural networks being used are standard feedforward

sigmoidal networks with adaptive back-propagation learning and the Cerebellar Model

Articulation Controller( CMAC) network[25-26]. Initial results with standard feedforward

networks have been good. Fig. 2 compares desired and actual angle of attack, pitch rate,

and normal acceleration responses to a specific stick input before training for .8M at 40,000

ft. Fig. 3 shows the same responses after neural network training. Similarly, Fig. 4 shows

responses before training at .65 M at 20,000 ft. that can be compared with after training

responses in Fig. 5. These plots demonstrate that the neural network is able to schedule
gains to greatly improve the performance and handling qualities of the aircraft.
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III. Fuzzy Logic Automatic Carrier Landing System

Carrier landings are one of the most difficult and unforgiving tasks that are routinely un-

dertaken by jet aircraft[19]. Modern jet aircraft are difficult to handle at low approach

speeds and must be brought down onto a small moving target in the presence of large

disturbances. Basic feedback techniques have many limitations, particularly in their re-

sponse to small maneuvers, carrier motion, atmospheric turbulence, and carrier air wake

turbulence. The main reason for these problems is that a standard ACLS is only concerned

with tracking glideslope, whereas the real goal is to have the correct terminal condition.

Human pilots have successful techniques for dealing with these situations, although they do

not have the speed, response capabilities, consistency, and precision of automatic systems.

Therefore, the goal of this task is to use fuzzy logic and neural network techniques[4,27] to

create an automatic system that utilizes human knowledge, automatic contiol techniques,

and knowledge derived directly from the airframe through unsupervised neural network

learning techniques. This controller would then be able both to intially incorporate hu-

man knowledge, and to be easily changed to reflect pilot criticism during flight testing and

simulation.

Originally, in an attempt to be fair to the current ACLS, the fuzzy system is only being

given the same inputs that are given to the conventional ACLS. This must be done since

additional inputs could improve standard feedback ACLS performance. Several possible

strategies that incorporate varying degrees of fuzzy human knowledge, neural network

airframe knowledge, and basic ACLS structure knowledge are being tested on a six degree

of freedom non-linear simulation of an F/A-18. The model has gust, carrier air wake, and

sensor noise models. It also has rate and position saturations on the engine and actuator

models.

The initial controller developed was the system of Fig. 6, using only Na-,y controls

engineer knowledge on proper feedback techniques for carrier landing, and Navy fighter

10
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pilot knowledge on carrier approach flying techniques. For the inital approach phase of

8000-4000 ft. to carrier, the fuzzy system has about the same integrated -glideslope error

as the current system, but decreases the number of aborted approaches or wave-offs, by

48 percent. The reason for this is that the fuzzy system is excellent at making rapid

maneuvers with little overshoot, and it does not just track glideslope. For example, if the

aircraft is a little high befoie entering the carrier air wake, the fuzzy system will make no

changes and allow the settling effect of the airwake to correct glide slope position. Fig. 7

shows the response of the fuzzy system to a high position and very high sink rate condition.

The system is trying to return to a sink rate of about -14.5 ft/sec when it hits the glide

slope. Fig. 8 shows the fuzzy system can make the adjustment to sink rate with fast rise

time and almost no overshoot. This same situation led to a wave-off by the conventional

ACLS. Fig. 9 shows a low condition far from the carrier. In this case, instead of just

tracking glide slope, the fuzzy controller waits until intersection. This prevents wasting

control power making an unnecessary quick return to glideslope.

The major effort at the moment is on completing the controller for the full approach,

and performing extensive analyses on it. After this, neural network derived rules will be

added to the system to see if improvements are possible. The new controller will be given

additional inputs such as weather condition to see if this yields improvements. Also fuzzy

pilot or mission computer supplied inputs will be included such as fuzzy stores information.

Instead of having to modify control gains every time a new configuration is created, the

pilot could just specify, for example, that there was a medium size store about half way

out on the wing. Additionally, fuzzy damage information might be input by the pilot.

Even with both the pilot's awareness and the best damage detection techniques available,

it is -tili difficult to determine the extent and type of many failures. Nonetheless, it is

easy for the pilot to specify, for example, that the plane is only rolling about half as fast

as normal. This input might allow an impaired aircraft to land safely. Following this,

11
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work on real-time on-line learning will begin. The modularity of this type of network

makes learning quick and- efficient. Also, since only a few of the fuzzy associations fire at

any given time, learning does not change the total network and override much previously

learned knowledge.

12
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IV. Neural Network Control Law Emulator

The main benefit of using a neural network to emulate an existing flight control law is

its capability of removing large software development and supports costs. The remain-

ing costs would only be those involving redundancy management, built-in-test, and other

associated functions of the flight control computer(FCC). Also, its fast and efficient com-

putation would allow much more complex control law structures to be used. The neural

FCC could be physically robust depending on-the type of network used. This type of grace-

ful degradation may help supply the degree of safety needed for all critical flight control

componeats. There are three primary problems associated with implementing this neural

network approach. The first is the validation problem that has been discussed throughout

this paper. The second is the need for fast predictible learning times and fast validation

to incorporate changes that need to be made to the system during flight tests. Replacing

software development time with months of learning time, and repeated Monte Carlo sim-

ulation for validation would not be an improvement. The final problem is the FCC's use

of dynamic control laws. It is unlikely that a static control law, even a very complex one

represented by a feedforward neural network, could ever adequately control an aircraft.

Therefore, recurrent networks seem the best possibility. However, feedforward networks

are already extremely difficult to validate, and recurrent ones are orders of magnitude more

difficult since they need to be validated through time as well as space. Thus, the basic

strategy is to use a network with additional outputs that represent intermediate flight con-

trol law states and make them inputs after a one time frame delay. This would also allow

many quick changes to be made to the network during flight tests without retraining the

network since all inputs and internal states are available for digital computer manipulation.
In addition, it is also much more transparent to analybis that, a more arbitrary feedback

system.

To perform this feedforward mapping, a large number of neural techniques were

13
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examined. The majority of these fall in an unexplored area between statistical regres-

sion, systems identification, and table look-up schemes. The architectures and learning

paradigms which were tested include standard siginoidal networks with adaptive back-

propogation learning, CMAC networks[25-26], radial basis networks[28], -and variouz. hy-

brid approaches[29-30 for example]. Each architecture was tested under a lrge number of

design iterations to determine the best structural parameters and learning methods that

could be reasonable achieved. Best results were attained by avoiding the "black box" ap-

proach, and modifying neural network structures to take advantage of available knowledge

about the flight control law. Three basic features were determined to be very useful for

a neural network to best perform this mapping problem. The first was the use of neu-

rons with spatially local receptive fields. This is nece--sary since most training techniques

converge only to small mean errors and require excesive training times to capture local

features. These small local errors-ultimately leads to arge drift over time due to the feed-

backs. The second beneficial feature was the use of vector quantization to position the

local neurons. This apportions more neurons in more complex areas of the space if it is

done correctly. This is important not only for matching the complex areas of the space,

but also for avoiding overgeneralization in simple aieas of the space. The final beneficial

feature was the use of discontinuites that could be adjusted during training. Without

these, the neural network will literally tie itself into knots in an attempt to fit the sharp

discontinuities and singularities found in this prolen.

The above features were incorporated into a nev.n hybrid architecture which could be

trained relatively quickly with a combination of sup. rvised and unsupervised techihiques.

This architecture, along with the aforementioned ones, was applied to the cont.rol system

in Fig. 10, whi'h is representative of the type of complexity found in modern flight control

laws. This control system include scheduled gains and biases, limits, integrators, filters,

and mode logic switches. For each neural architecture that was tested, a considerable

14
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amount of effort was spent on determining optimal network parameters and training tech-

niques. This was necessary due to the lack of "-3ign-guidelines for many of the examined

networks. The results were that the new h Ib .chitecture had a significantly smaller

error than the other architectures that -.. ,. 'est -,. '.he responCe of this architecture to

uncorrelated inputs with a 1Oms frame rate or', 5 sec. is shown in Fig. 11. The reason

there is no drift over time is due to the excclh. t. -atching of internal -v ariables as shown

in Fig. 12. Internal variables aie matched weli a.. ;e this i.etwork was optimized more for

internal variables than outputs. For this sample problem, the network has the accurac

to replace a flight control computer and icquires only seventy neurons. Exact accurac-y is

not cailed for since a digital flight control computci typically has noisy inputs and sends

outputs to actuators with analog loop closures thdL use 1 and 5 percent resistors and

capacitors. The real goal is not to achieve exact duplication of the control law, but to

achieve identical closed loop response characterLtics of the aircraft. For the future, we are

working on imp:.cving neural architectures for flight control law einulation, and achieving

fast alteration and validation tec.,,iques. We are also concurzently applying the curi-ent

architecture with some of the other morc successful ones to a full complex flight control

system.
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V. Neural Network Configuration Management

Tnis program is a contracted effort to Systems Technology, Inc.(STI) and 'TR. The ob-

jecLive of this project is to explore the ability of artificial neural networks to identify and

compensate for adverse dynamics that can be encountered during configuration c..Langes

of high performance airciaft. Configuration cil-anges may occur in response to damage

contro,, mission profile segment transi.ic a, and tactical mode change. The neural network

will at tempt to minimize the likelihood of false rec~nfigurations and opt iize mission ef-

fectiveness following appropriate reconfigurations. The major focus of the initial phase

of the project was on an experimental variant of the F/A-18 with stabilator and thrust

vectoring damage. The neural techniques used were an adaptive clustering network which

was placed parallel to a conventional controller and trained by feedback error learning. On-

line learning was greatly enhanced for these networks with an algorithm that added new

radial basis function neurons to the network on-line. The results thus far have shovn that

neural networks can intrinsically identif- hese failures and compensate for them within

several seconds, but additional work will be necessary to judge how well neula networks

can perform on the full problem.
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VI. Future and Recently Begun Efforts

Our other contracted efforts are from the responses to a Broad Agency Announcement

on neural network based approaches to flight control for Naval fighter and attack aircraft.

The first effort is learning augmented ad:,.ptive control which is being done by Charles

Stark Draper Labs[31]. This program will -,.'tempt to develop special purpose neural

network learning systems that can provide real-time on-line learning within a flight control

system architecture. The approach will be applied to the controi of a nonlinear six degree

of freedom high performance jet aircraft model 'uy designing with a simple model and

evaluating how well the controller can adapt to the full model with on-line learning. The

possibility of realizing successful on-1,e lea..ig,l is greatly enhanced by the use of some

innovative spatially local neural netwo..s.

The second effort is to augment nonlinear control methods and is being done be Guided

Systems Technology. The objective of this research is to demonstrate a method for design

and implementation of high performance jet aircraft contrl ;ystems that makes use of

both neural networks and robust nonlinear control theory. Neural networks will be used

t( deal with model uncertainty in the design process and pcrform the mappings required

in feedback linearization of the aircraft's dynamics[32]. This will be applied to a full six

degree of freedom nonlinear F/A-18 High Alpha Research Vehicle(HARV) simulation.

We also have plans for in-house work in neural network and fuzzy logic augmenta-

tion systems(NNFLAS) to conventional flight control systems. The reason for using an

augmentation system is that by limiting the authority of the NNFLAS, the neural/fuzzy

component may be treated as a disturbance to the conventional system to allow easy vali-

dai:on. The benefits of such a system, however, may be to provide on-line learning through

i.cural i~cLworks, and to provide improved handling qualities -pecifications through com-

plex neural network cost functions and fuzzy logic rules.

Optical neural networks are of considerable interest since they avoid many limitations

inheicnt in bilicon neural network implementations and have exceptionally high processing

17
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speeds. Also, for avionics systems, light based computing is of particular interest since

it is immune to the high electromagnetic flux environment that may be encountered on

aircraft. For these reasons, we are planning work in this area as well.

18
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VII. Conclusions

It is -still too soon to judge whether neural networks will prove able to overcome any FCS

problems in ways that are suitable for flight testing and eventual routine use. The programs

presented here hope to bring neural networks based approaches to such a level. Following

successful flight tests, of course, the way would be open for more unconventional and inno-

vative approaches to neuro-control -that may ultimately create controllers that are vastly

different from current ones. However, at the moment most of our approaches are geared to-

ward creating neuro-control systems that are constrained to behave similarly in function to

current systems. Even the carrier landing study and configuration management study are

more involved with augmenting existing systems than creating completely unconventional

ones. The one area that has sufficient potential to justify much higher risk approaches is

that of on-line learning. Even if on-line learning is not suitable for fleet aircraft, just having

on-line learning available during flight testing or manned simulation could be incredibly

valuable for the development process. For that reason, we are doing work in that area

despite the potential problems, since we believe they may be surmountable.
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